# Constraints on Spacetime noncommutativity from CMB and LSS

Joby Kochappan

Asia-Pacific School and Workshop, Gravitation and Cosmology, 2023-05-16

Collaborators: Pravabati Chingangbam, Benjamin L'Huillier, Cristiano Sabiu



# Non-commutative Spacetime model

\* Quantum theories of gravity suggest that spacetime is non-commutative at length scales close to the Planck length.

$$\left[\hat{x}_{\mu},.\right]$$

\* Introduces a special spatial direction:  $\vec{\theta}^0 = \theta \hat{\theta}^0$ 

$$\left| \hat{x}_{\nu} \right| = i\theta_{\mu,\nu}$$



### Modified Power Spectrum

\* Modified primordial scalar power spectrum:

\* Modified CMB power spectrum:

$$\mathscr{C}_{\ell}^{TT} = \left[ \frac{\mathrm{d}kk^2 P_0(k)}{\mathrm{d}k^2} \left| \Delta_{\ell}^T(k) \right|^2 \frac{\mathrm{sinh}(\theta Hk)}{\theta Hk} \right]$$

 $P_{\theta}(\vec{k}) = P_0(k) \left| 1 + \frac{H^2}{2} \left( \vec{\theta}^0 \cdot \vec{k} \right)^2 \right|$ 

 $\mathscr{C}_{\ell}^{EE} = \left[ \frac{\mathrm{d}kk^2 P_0(k)}{\mathrm{d}k^2} \left| \frac{\Delta_{\ell}^E(k)}{\Delta_{\ell}^E(k)} \right|^2 \frac{\sinh(\theta Hk)}{\Omega H} \right]$ *Hk* 



### Method

#### \* Modify the primordial scalar power spectrum in CAMB to accommodate the additional $\frac{\sinh(\theta Hk)}{\theta Hk}$ factor.

\* Compute modified CMB power spectra for noncommutative spacetime.

\* Run MCMC with modified CAMB to get constraints on  $\alpha = \theta H$ .

\* Use H during inflation to constrain  $\theta$ .



\* Akofor et al. (2009), with WMAP, ACBAR and CBI data got  $\sqrt{\theta} < 1.36 \times 10^{-19}$ m.

- \* Joby et al. (2015), with Planck 2013, got  $\sqrt{\theta} < 0.653 \times 10^{-19}$ m.
- precision of Planck data.

#### Previous Constraints

\* Improvement by a factor of  $\approx 2$ , comes from higher angular resolution and



# Modified CMB (TT) power spectrum











# Constraint from Planck 2018 data



#### \* Marginalised upper bound: $\log_e(\alpha) < -7.66$

\*  $\alpha < 0.00047$ 

\* Length scale  $\sqrt{(\theta)} < 0.277 \times 10^{-19} \text{m}$ 

1.00



# How far can we get with CMB data?

\* Fisher matrix estimate for future CMB experiments.

\* For  $\ell_{max}$  > 3000, with error bars comparable to cosmic variance, what is the expected constraint on  $\theta$ ?

\* At which  $\ell_{max}$  do the constraints saturate?



### Constraint from LSS simulations

- spacetime.
- \* N-body simulations to estimate late time matter power spectrum.
- \* Constrain  $\theta$  by comparing with simulations of commutative spacetime.
- \* How does this constraint compare to the constraint from CMB data?

\* Linear matter power spectrum from modified CAMB for noncommutative



### Summary

- CMB and matter power spectra.
- scales.
- \* Constraint from Planck 2018 data:  $\sqrt{(\theta)} < 0.277 \times 10^{-19}$ m
- \* Forecast constraint from future CMB experiments.
- \* Constraint from simulations of matter density distribution.

#### \* We have considered the prediction of noncommutative spacetime for the

\* The modification introduces a factor that increases exponentially at smaller

