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Penrose inequality:

The surftace area of the Kerr horizon i1s

Ap = 8nMp (Mg + /M3 — a2) < 16w M3
Following these three points:

1. Since the gravitational waves carry positive energy, the Bondi mass can never be larger than the Arnowitt-Deser-
Misner (ADM) mass M

2. From the second law of black hole thermodynamics, the area of the event horizon can not decrease

3. Any apparent horizon must be hidden inside the event horizon
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Penrose inequality is an inequality on initial data 2 / \ éz >




The Penrose inequality involves the apparent horizon of the initial data set, and 1t does not require that the spacetime 1s or will
finally settle into a stationary black hole. It gives a relation between the energy and the size of the space i1t occupies. It we focus
on a stationary black hole, the area of horizon stands for the Bekenstein-Hawking entropy of the system via
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The Penrose inequality then becomes an entropy bound for a system of given total energy.

The fact that the product TS has the same dimension of energy suggests that it may modify the mass bound 1n the inequality
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This inequality 1s independent of the Penrose inequality and the saturation appears to be possible also only by the Schwarzschild
black hole.

An 1nteresting question arises: could we find a new lower bound for the total energy such that it 1s tighter than these inequalities?

Penrose inequality 1s about how the appropriate energy-momentum tensor of the minimally-coupled matter constrains the spacetime

geometry.

We observe from the RN black hole that 7S5 =
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For the extremal case, we have T =0

S and the above inequality gives us a
M Z o ZTS tighter bound of the ADM mass

compared to the Penrose inequality 5

We propose a new Penrose-like inequality for a static black hole




The Proof:

For the spherically-symmetric and static configurations
ds? =

The asymptotic flatness requires f(r)=1-2M/r+---,
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For the matter energy momentum tensor 7*, = diag{—p(r), p(r), pr(r), pr(r)} Einstein’s equation leads to three ordinary

differential equations
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There exists four known quasi-local masses associated with (Monotonically non decreasing function)

NEC p+P=>0
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Give us same as SEC and WEC 4



We define a quasi-local mass that 1s the most general linear combination of all other masses

m(r) = 2my, (1) — ms(r) + a(3my(r) — mg(r) — 2my, (1)) + 28(mg — my,)

such that
m(ry)=ry —2TS  m(oco) =M

It’s derivative yields

m/(r) = 7(1 = e 2%) + (1= y)rr’p(L — e~ 2X) + 4mre™2X((1 = 7)p— (1 +7)pr — 2p7)

Imposing NEC+TEC (-T = 0) to the above relation we have m’(fr) > 0

Note that the WEC will be also satisfied under requirement of NEC+TEC.

Rotating case D dimensional case
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Cosmological constant case
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Schwarzschild-(A)dS and RN-(A)dS
Einstein-Born-Infeld-(A)dS
Einstein-QTE-(A)dS



Summary of the concert examples:

BH /EC NEC | WEC | DEC | SEC | NEC+H+TEC | inequality
RN True | True | True | True True True
Born-Infeld | True | True | True | True True True
QTE (> 0) | True | True | True | True True True
STU True | True | True | True True True
Pure scalar | True | False | False | False False True
Bardeen True | True | False | False False False




Conclusion :

Penrose inequality for extremal black holes have a large gap from saturation, so we proposed a tighter bound for static
black holes which 1s saturated by the RN black hole.

We gave a proof for general spherically-symmetric and static black holes.
The requirement “NEC+TEC” 1s a sufficient condition for our inequality.

We considered generalizations 1n various directions such as to higher dimensions, to include rotation and cosmological
constant.
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ABSTRACT

1e Penrose inequality estimates the lower bound of the mass of a black hole in

ea of its horizon. This bound is not very “tight” for extremal or near extren






