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Background
Introduce to MMG

Minimally Modified Gravity:
Minimally Modified Gravity (MMG) is a kind of special MG theories
that propagates only Two Tensorial DOF (TTDOF) 1 without
arising extra DOF motivated by:
▶ phenomenally, to propose the candidates corresponding to the

tensor polarizations signals from GWs events;
▶ theoretically, to investigate the possibilities of the existence of

MMG theories;
▶ additionally, to provide some insights to the problems of

cosmology.

1The "TTDOF" also refers to the Transverse and Traceless DOF.
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Backgroud
Attempt on MMG

D → 4 Einstein-Gauss-Bonnet gravity 1:
GR with a dimensionally regularized GB term

S4D
EGB = lim

D→4

1
2κ2

∫
dDx

√
−g

(
R − 2Λ +

α

D − 4
R2

GB

)
(1)

is a MG theory with TTDOF bypassing the Lovelock theorem?

Lovelock theorem2:
GR is the unique gravitational theory propagating TTDOF with the
following conditions:
▶ 4-dim theory with locality;
▶ Metric filed with 2nd-order EoM;
▶ General covariance;

→ Spatial covariance.

1[Glavan and Lin, PRL, 2020]
2[Lovelock, J. Math. Phys. 1972]
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Background
Two approaches to MMG

The Lagrangian approach1 2:

Lagrangian Hamiltonian
TTDOF
conds.

TTDOF theory

Legendre trans. complicated

The Hamiltonian approach3 4:

Hamiltonian
Minimailizing

conds.
MMG theory Lagrangian

Legendre trans.simplified

1[C. Lin and S. Mukohyama, JCAP, 2017]
2[X. Gao and Z.-B. Yao, PRD, 2020]
3[S. Mukohyama and K. Noui, JCAP, 2019]
4[Z.-B. Yao, M. Oliosi, X. Gao and S. Mukohyama, PRD, 2021]
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MMG with ACs: the formalism
Constructing the framework

A naive framework with spatial covariance:
To a general total Hamiltonian w.r.t. spatial diffeomorphism

HT =

∫
d3x

[
H

(
N, π, hij , π

ij ;∇i

)︸ ︷︷ ︸
arbitary function

+N iHi + λiπi︸ ︷︷ ︸
3d-diff constr.

]
(2)

we can count the number of DOF by

Γ :

 ADM-var︷ ︸︸ ︷
N,N i , hij ;

Conj-mmta︷ ︸︸ ︷
π, πi , π

ij


︸ ︷︷ ︸

20-dim phase space


4s

4v +

2t

Hi ≈ 0i , πi ≈ 0i︸ ︷︷ ︸
3d-diff., 1st-class


→ 2s

→ 0s

→ 0v

→ 2t

MMG
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MMG with ACs: the formalism
Constructing of framework

A consistent framework with ACs:
To a general total Hamiltonian with auxiliary constraints

HT =

∫
d3x

(
H︸︷︷︸

free-fun.

+N iHi + λiπi︸ ︷︷ ︸
3-diff.

+µn Sn︸︷︷︸
ACs

)
, (3)

with n = 1, · · · ,N (N ≤ 4) and we count the number of DOF by

Γ +

3d-diff︷ ︸︸ ︷
Hi , πi


︸ ︷︷ ︸

constrained phase space


2s

0v +

2t

prim.︷︸︸︷
Sn +

seco.︷︸︸︷
Ṡn + · · ·︸ ︷︷ ︸

#s
1st+#s

2nd


→ 2s −#s

1st − 1
2#

s
2nd

→ 0v

→ 2t

For the purpose of constructing a MMG theory, we require

2s −#s
1st −

1
2
#s

2nd = 0, 0 ≤ #s
1st +#s

2nd ≤ 4. (4)
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MMG with ACs: the formalism
Results collections

# ACs Minimalizing cond. Symmetrizing cond. Classifications Ident. key Examples

#s = 4 none none #s
1st = 0, #s

2nd = 4 IV-0-4 Mixed Traces

#s = 3
[
S1,Sn] [

S1,H
]

#s
1st = 1, #s

2nd = 2 III-1-2 unknown

none #s
1st = 0, #s

2nd = 4 III-0-4 unknown

#s = 2

[
S1, Sn]&[

S2,S2]
[
S1,H

]
&
[
S2,H

]
#s

1st = 2, #s
2nd = 0 II-2-0 unknown[

S2, Ṡ1
]
&
[
S2,H

]
#s

1st = 1, #s
2nd = 2 II-1-2b unknown

none #s
1st = 0, #s

2nd = 4 II-0-4b Linear AC

[
S1, Sn]& [

S1, Ṡ1
] [

Ṡ1,HP

]
#s

1st = 1, #s
2nd = 2 II-1-2a 4dEGB

none #s
1st = 0, #s

2nd = 4 II-0-4a unknown

#s = 1

[
S1,S1] , [S1, Ṡ1

]
&
[
Ṡ1, Ṡ1

]
[
Ṡ1,H

]
#s

1st = 2, #s
2nd = 0 I-2-0 GR & f (H )[

Ṡ1, S̈1
]

#s
1st = 1, #s

2nd = 2 I-1-2b unknown[
S1,S1] , [S1, Ṡ1

]
&
[
S1, S̈1

]
[
S̈1,H

]
#s

1st = 1, #s
2nd = 2 I-1-2a Cuscuton & QEC

none #s
1st = 0, #s

2nd = 4 I-0-4 unknown

Table 1: The minimalizing and symmetrizing conditions.

Note that we simply denote the condition [· (x⃗) , · (y⃗)] ≈ 0 by [·, ·] in the table.
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MMG with ACs: the examples
A special case of I-2-0 type of MMG

General Relativity:
The total Hamiltonian of GR

H
(GR)
T =

∫
d3x

(
N

Ṡ1︷ ︸︸ ︷
H(GR)

0 +λ

S1︷︸︸︷
π︸ ︷︷ ︸

time-repar.

+N iHi + λiπi︸ ︷︷ ︸
3d-diff.

)
, (5)

with the momentum constraint

H(GR)
0 ≡ 1√

h

(
πijπij −

1
2
πi
iπ

j
j

)
−
√
h (R + Λ) . (6)
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MMG with ACs: the examples
A concrete model with four ACs

Cayley-Hamilton construction with mixed traces constraints
We construct a concrete model of MMG with four ACs which can
be used to couple with matter consistently

H
(C.H.)
T =

∫
d3x

[
H (C.H.) + N iHi + λiπi

+λ π︸︷︷︸
S4

+µI

(
QI − P I (N)︸ ︷︷ ︸

S1∼S3

)]
, (7)

where we choose the mixed traces Q I as three ACs

R I ≡
{
R i
i ,R

i
jR

j
i ,R

i
jR

j
kR

k
i

}
, (8)

Π I ≡
{
πi
i , π

i
jπ

j
i , π

i
jπ

j
kπ

k
i

}
, (9)

Q I ≡
{
R i
j π

j
i ,R

i
j π

j
kπ

k
i ,R

i
jR

j
kπ

k
i

}
. (10)
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MMG with ACs: the examples
A concrete model with four ACs

Tensor perturbations:
On the flat FLRW background hij = a (t)2 gij with

gij ≡ δij + γij +
1
2!
γikγ

k
j +

1
3!
γikγ

k
lγ

l
j + · · · , (11)

we derive the quadratic action as follows

S
(C.H.)
2 =

∫
dtd3x

1
4

(
G0 (t) γ̇ij γ̇

ij+W0 (t) γij
∆

a2γ
ij−W2 (t) γij

∆2

a4 γ ij
)
,

where

G0 (t) ≡

[(
∂H̄

∂Π2

)2

− 3
∂H̄

∂Π3

(
∂H̄

∂Π1 − 2H
)]−1/2

, (12)

W0 (t) ≡ −∂H̄

∂R1 +ϖ0 (t) , W2 (t) ≡
∂H̄

∂R2 +ϖ2 (t) . (13)

9 / 11



MMG with ACs: the examples
A concrete model with four ACs

Dispersion relation:

ω2
T =

W0 (τ)

G0 (τ)

k2

a2 +
W2 (τ)

G0 (τ)

k4

a4

=
k2

a2 G
−1
0

[
ϖ0 −

∂H̄

∂R1 +

(
ϖ2 +

∂H̄

∂R2

)
k2

a2

]
. (14)

On large scales, the speed of GWs cT = ωT/k = 1 when

∂H̄

∂R1 = ϖ0 − G0, (15)

which, as well as the modified dispersion relation, should be
constrained by

−3× 10−15 <
W0

G0
− 1 < 7× 10−16,

∣∣∣∣W2

G0

∣∣∣∣ < 10−19 peV−2. (16)
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Summary

▶ Put forward the concept of "auxiliary constraint" and
developed it into a formalism;

▶ Found out all possible constraints structures for the MMG
theories with ACs and derived the corresponding minimalizing
and symmetrizing conditions for each cases;

▶ Constructed a concrete MMG model with four ACs and
derived the dispersion relation for the gravitational waves.

Thank you for your attention!
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Background
Case of N = 3

The partial Dirac matrix with three ACs:

[·(x⃗), ·(y⃗)] S1 S2 S3

S1 × × ×
S2 × × ×
S3 × × ×

Classification: #s
1st = 1,#s

2nd = 2

[·(x⃗), ·(y⃗)] S1 S2 S3

S1 0 0 0
S2 0 × ×
S3 0 × ×

According to the time evolution of the ACs, we require

Ṡ1 (x⃗) =

∫
d3y

{ [
S1 (x⃗) ,Sn (y⃗)

]︸ ︷︷ ︸
minimalizing cond.

µn (y⃗) +
[
S1 (x⃗) ,H (y⃗)

]︸ ︷︷ ︸
symmetrizing cond.

}
≈ 0.

1 / 5



Background
A special case of I-1-2a type of MMG

The Cuscuton 1:
The total Hamiltonian of Cuscuton

H
(Cus)
T =

∫
d3x

(
NH(Cus)

0︸ ︷︷ ︸
2nd

+λ π︸︷︷︸
1st

+N iHi + λiπi︸ ︷︷ ︸
3d-diff.

)
, (17)

with the momentum constraint

H(Cus)
0 ≡ 1√

h

(
πijπij −

1
2
πi
iπ

j
j

)
−
√
h

(
R + V +

µ2

N

)
. (18)

1[N. Afshordi, D. J. H. Chung and G. Geshnizjani, PRD, 2007]
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Background
Corresponding action

By performing the Legendre transformation, we formally obtain the
corresponding action as follows

S =

∫
dtd3x

[
N
(
πF + 2πijKij

)
− H − µnSn] , (19)

where π and πij should be understood as the solutions of

NF =
δHP

δπ
, 2NKij =

δHP

δπij
(20)

with

F ≡ 1
N

(
Ṅ − N i∇iN

)
, Kij ≡

1
2N

(
ḣij − 2∇(iNj)

)
. (21)
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Backup

The coefficients

ϖ0 (t) ≡ −1
2
G0µ̄

′
1 +

(
3
∂H̄

∂Π3

)−1 (
G0

∂H̄

∂Π2 − 1
)
µ̄′

2

+

[(
3
∂H̄

∂Π3

)−1 (
∂H̄

∂Π2 − G−1
0

)
− G′

0
2

+ G0H

]
µ̄1

+

(
3
∂H̄

∂Π3G0

)−2 [
− 1 + G0

(
3G0(G0

∂H̄

∂Π3
∂H̄

∂Π2

′

+
∂H̄

∂Π3

′

+ 2
∂H̄

∂Π3H) +
∂H̄

∂Π2 (2 − 3G0(G0
∂H̄

∂Π3

′

−∂H̄

∂Π3G
′
0 + 2

∂H̄

∂Π3G0H))− ∂H̄

∂Π2

2

G0

)]
µ̄2. (22)
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Backup

The coefficients

ϖ2 (t) ≡
(

6
∂H̄

∂Π3

)−2 [
12

∂H̄

∂Π3

(
G−1

0 − ∂H̄

∂Π2

)
µ̄3

−G0

(
3
∂H̄

∂Π3 µ̄1 + 2
(
G−1

0 − ∂H̄

∂Π2

)
µ̄2

)2 ]
. (23)
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